Aas 08-239 Autonomous Navigation Algorithm for Precision Landing on Unknown Planetary Surfaces
نویسندگان
چکیده
A localization algorithm is developed to assist automated landing on unknown planetary surface. Classically, using a vision-sensor only, the vehicle states are subject to an observability issue. In order to overcome this problem, relative motion estimates were used as measurements in addition to image-plane data of the feature points. Using these data as measurements, a nonlinear least square estimator was designed that estimates the state vector when a priori knowledge of the state is not available. Furthermore, an Extended Kalman filter with fusing on-board IMU data was developed and shows promising results for future refinement of the previous estimates.
منابع مشابه
A Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملChallenges of Pinpoint Landing for Planetary Exploration : the Lion Absolute Vision-based Navigation System Step-wise Validation Approach
After ExoMars in 2016 and 2018, future ESA missions to Mars, the Moon, or asteroids will require safe and pinpoint precision landing capabilities, with for example a specified accuracy of typically 100 m at touchdown for a Moon landing. The safe landing requirement can be met thanks to state-of-the-art Terrain-Relative Navigation (TRN) sensors such as Wide-Field-of-View vision-based navigation ...
متن کاملA Hierarchical SLAM/GPS/INS Sensor Fusion with WLFP for Flying Robo-SAR's Navigation
In this paper, we present the results of a hierarchical SLAM/GPS/INS/WLFP sensor fusion to be used in navigation system devices. Due to low quality of the inertial sensors, even a short-term GPS failure can lower the integrated navigation performance significantly. In addition, in GPS denied environments, most navigation systems need a separate assisting resource, in order to increase the avail...
متن کاملSURF-Based SLAM Scheme using Octree Occupancy Grid for Autonomous Landing on Asteroids
As space agencies are currently looking at Near Earth Asteroids as a next step on their exploration roadmap, high precision autonomous landing control schemes using passive sensors (i.e. cameras) will be required for upcoming missions. Attempting to address this need, the Guidance Navigation and Control (GNC) system presented here is an online visual navigation scheme that relies on only one ca...
متن کاملOn the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor
This paper presents the design and development of autonomous attitude stabilization, navigation in unstructured, GPS-denied environments, aggressive landing on inclined surfaces, and aerial gripping using onboard sensors on a low-cost, custom-built quadrotor. The development of a multi-functional micro air vehicle (MAV) that utilizes inexpensive off-the-shelf components presents multiple challe...
متن کامل